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Abstract In this work we used a combination of classical
molecular dynamics and simulated annealing techniques to
shed more light on the conformational flexibility of 12
adenosine triphosphate (ATP) analogues in a water envi-
ronment. We present simulations in AMBER force field for
ATP and 12 published analogues [Shah et al. (1997) Proc
Natl Acad Sci USA 94: 3565–3570]. The calculations were
carried out using the generalized Born (GB) solvation
model in the presence of the cation Mg2+. The ion was
placed at a close distance (2 Å) from the charged oxygen
atoms of the beta and gamma phosphate groups of the −3
negatively charged ATP analogue molecules. Analysis of
the results revealed the distribution of inter-proton distances
H8–H1′ and H8–H2′ versus the torsion angle ψ (C4–N9-
C1′–O4′) for all conformations of ATP analogues. There are
two gaps in the distribution of torsion angle ψ values: the

first is between −30 and 30 degrees and is described by cis-
conformation; and the second is between 90 and 175
degrees, which mostly covers a region of anti conformation.
Our results compare favorably with results obtained in
experimental assays [Jiang and Mao (2002) Polyhedron
21:435–438].
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Introduction

Adenosine triphosphate (ATP) is one of the most important
molecules on Earth, present in all cells of all living
organisms. This high-energy nucleotide powers, in several
different ways, most biochemical processes that require
energy. One such way is the transfer of a phosphate group
to another molecule in a process called phosphorylation.
This reaction is carried out by enzymes called kinases.
Identification of substrates that are phosphorylated by
specific kinases is difficult because of the enormous
number of these enzymes, and also because kinases display
overlapping substrate specificities [1, 2]. The approach
presented by Shah et al. [3] is based on using both
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mutatated kinases that enlarge the ATP-binding pocket, and
ATP analogues, whose specificity allows the kinase
substrates to be identified. This method was used success-
fully to study Rous sarcoma virus tyrosine kinase [3].

The process of designing ATP-analogues complemen-
tary to modified kinases has to begin by understanding
the conformational behavior of the nucleotide, and
assurance that the modification introduced into ATP does
not change its conformational properties. In this work, we
study the conformation of the ATP molecule and the 12
analogues proposed by Shah et al. [3] bound with
magnesium cation (Mg2+) using molecular dynamics
(MD) simulation enhanced with simulated annealing
(SA). We present a full set of AMBER force-field
parameters for each of the ATP analogues, which provides
the possibility to use models of these molecules in other
computational experiments, such as docking and molecu-
lar modeling of the interaction between such analogues
and kinases.

Since the discovery of protein kinase activity in 1954
[4], the field of protein kinase drug discovery has advanced
dramatically. More and more researchers are involved in the
design of new kinase inhibitors, as there is much focus on
this subject by the pharmaceutical industry. Molecular
modeling is one of the most helpful tools in this field. For
example, molecular modeling was used successfully in
studies on inhibitors of vascular endothelial growth factor
receptor tyrosine kinase [5], the cyclin-dependent kinase
family [6, 7], as well as in the case of the serine-threonine
kinases p38 [8], Aurora A [9] or checkpoint kinase 1 [10].
The models presented in this work, together with their
AMBER force-field parameters, can also be used for
modeling kinase inhibitors as well as for designing ATP
analogues other than those shown here.

Methods

Initial models

The ATP analogues considered in this work were taken from a
set presented by Shah et al. [3]. Models of these ATP
analogue molecules were built using MOLDEN [11], using
also a model of the ATP molecule from the Structural
Cambridge Database (entry ADENTP03 [12]) as a template.
Two of the ATP analogue models, namely N6-methoxy ATP
(AT1P) and N6-pyrrolidino ATP (AT7P) were built in our
previous work [13]. Hybridizations of atom N6 in ATP-
derivatives were determined by comparison with molecules
having the N-substituent group attached to the aromatic ring.
A comparison of crystal structures with the ATP-models is
presented in Table 1.The charge of ATP and its analogues
was −3, consistent with the models presented by Shah et al.
[3]. Parameterization of the ATP analogues to the AMBER
force field was performed as recommended in the AMBER
[14] manual. Restrained electrostatic potential (RESP) was
used to obtain partial atomic charges of ATP and its 12
analogues. The structures of the models were subjected to
geometry optimization at the HF/6-31G* level using the ab-
initio chemistry package GAMESS [15]. Charges were
calculated from optimized geometries using R.E.D. (see
http://q4md-forcefieldtools.org/RED/). A complete set of
information on the assigned atom types and atomic charges
in LEaP Object File Format (OFF) files can be found in the
electronic supplementary material. All modifications intro-
duced to the AMBER force field [16], which were used to
parameterize ATP analogues, are shown in Table 2.

ATP requires the presence of a divalent cation, usually
magnesium, which is coordinated by ATP phosphate
groups. The presence of the ion is crucial to obtaining

Name Abbreviation Crystal structure N6 Hybridization

N6-methoxy ATP AT1P SALTII [28] sp2

N6-etoxy ATP AT2P SALTII [28] sp2

N6-acetyl ATP AT3P ACANIL01 [29] sp2

N6-i-propoxy ATP AT4P TIHFAS [30] sp2

N6-benzyl ATP AT5P GEJKUB [31] sp2

N6-benzyloxy ATP AT6P - sp2a

N6-pyrrolidyno ATP AT7P TAJGUG [32] sp2b

N6-cyclopentyl ATP AT8P UFOGUR [33] sp2

N6-cyclopentyloxy ATP AT9P - sp2a

N6-piperidino ATP AT10P BEBKID [34] sp2

N6-cyclohexyl ATP AT11P ANEDCP [35] sp2

N6-cyclohexyloxy ATP AT12P EHAYIV [36] sp2

Table 1 Hybridization of the
N6 atom of adenine in 12 ATP
analogues, as obtained from
similar crystal structures from
the Cambridge Crystal Structur-
al Database [27]

a Hybridization was calculated us-
ing HF/6–311 method
b AT7 P–hybridization is sp2, and
not sp3 as was accidentally stated
in our previous work [13]
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proper conformation of ATP but is also very important in
catalyzing the phosphotransfer reaction [17], particularly in
kinases [18]. One magnesium cation (Mg2+) was added to
each model of ATP molecule using the LEaP command

addIons. The addIons procedure places the counterion in a
shell around one or more ATP analogue anion using a
Coulombic potential on a grid.

The reason why only one magnesium cation was added can
be found in our previous work [13, 19], where ATP and two
ATP-derivatives respectively were docked to the serine-
threonine kinase PrkC, and only one magnesium ion was
found near the phosphates. An extensive study by Martinez
et al. [20] on ATP conformations and ion binding modes in
the active site of anthrax edema factor also supported a
mechanism of kinase activity based on the presence of one
magnesium cation in the active site of the enzyme.

The magnesium cation was held using distance restraints
during the SA simulations. To obtain an input distance
restraint, we calculated the distances between the magnesium
ion and four oxygen atoms of the phosphate groups beta and
gamma (see Fig. 1), from initial structures after using
addIons command. The values of distances varied between
2.0 and 4.5 Å. These values were used as boundary values
and the force constants for distance restraints were 20 kcal
mol−1 Å on each of the four distances (Mg–O1B, Mg–O2B,
Mg–O1G and Mg–O2G).

Minimization and SA simulations

Initial structures of ATP and its analogues were optimized
with SANDER, part of the AMBER 9.0 package [14] using
Steepest Descent minimization for 5,000 steps, followed
by the 15,000 steps of conjugate gradient minimization.
Subsequently, all models were submitted to a 50-ps
(50,000 steps with 1 fs time step) run of the SA protocol
for 1,000 times. The single SA protocol consisted of four
stages (see Fig. 2):

(1) 0–2 ps Short equilibration

Table 2 Parameters introduced to the AMBER force field

Bond Parameters

CA-N 481. 1.340

N2-OS 448. 1.365

H –OH 553. 0.960

Angle Parameters

H -OH-P 45.0 108.500

CA-N2-OS 70.0 120.000

N2-OS-CT 60.0 117.000

H -N2-OS 50.0 121.200

OS-CT-HC 50.0 109.500

OS-CT-CA 50.0 109.500

N2-CT-HC 50.0 109.500

N2-CT-CA 80.0 111.200

CT-N2-CT 50.0 109.500

CB-CA-N 70.0 123.500

CA-N -H 50.0 120.000

CA-N -C 50.0 121.900

NC-CA-N 70.0 119.300

Dihedral Parameters

CA-N2-OS-CT 4 7.50 180.0 2.

H -N2-OS-CT 4 7.50 0.0 2.

CB-CA-N -H 4 9.60 180.0 2.

CB-CA-N -C 4 9.60 180.0 2.

NC-CA-N -H 4 9.60 180.0 2.

NC-CA-N -C 4 9.60 180.0 2.

Improper Parameters

HC-CT-OS-HC 1.1 180.0 2.

MD simulation time [ps]
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Fig. 1 Distance restraints held
the magnesium cation (Mg2+)
close to the charged oxygen
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O2B and O2G) of the phos-
phates (2.0–4.5 Å)
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(2) 2–10 ps heating from 300 K to 1,200 K
(3) 10–40 ps slow cooling from 1,200 K to 300 K
(4) 40–50 ps equilibration at 300 K

Each set of final coordinates from one SA simulation
was used as a starting point for the following simulation. It
is worth noting that there is a short equilibration period, in
the first stage of the SA run, before the heating stage.
Running the heating procedure immediately after minimi-
zation, brings instability to the system and causes unusually
high energy.

The simulations were carried out using the implicit
solvent model, namely the generalized Born (GB) solvation
model developed by Onufriev, Bashford and Case (GBOBC)
[21]. We are aware that the continuous solvent model is a
crude approximation and does not take into account the
molecular structure of water. It also neglects several modes
of interaction, like hydrogen bond formation between solute
atoms and water, but our results suggest that it is good
enough to reproduce experimental results. The GB solvent
model enabled us to perform quick SA simulations without
causing artifacts in the water structure. For temperature
regulation we used the Langevin thermostat [22] and a
collision rate of 1 ps−1.

Analysis

Analysis of the ψ angle vs the inter-proton distance H8-H1′
and H8-H2′

The calculations of the torsion angle ψ, defined as O4′–
C1′–N9′–C4′, and inter-proton distances (H8–H1′ and H8–
H2′) were carried out using the PTRAJ module of AMBER

9 [14] based on the final structures from each of the
simulation. Collected data are presented in Fig. 3 which was
created using the gnuplot program (http://www.gnuplot.info).
Points illustrating the dependence between the torsion angle
(O4′–C1′–N9–C4) and inter-proton distances were fitted to
the function: f ðxÞ ¼ A»sin x� o½ �=BÞð Þ þ C (Fig. 3a).
Parameters obtained after the fitting procedure are presented
in Table S1 (see electronic supplementary material). Fitting
was done only for calculations concerning ATP, to visualize
the shape of the plot of this function.

Results and discussion

Here we report the results of the conformational analysis
carried out after MD simulations.

Magnesium cation restraints

The distances between magnesium and oxygen atoms (O)
were measured to verify if the magnesium cation was kept
in place by the restraints during our simulations. An
illustration of what happens during a single SA run is
presented in Fig. 1. We show only the first run for ATP,
because the remaining runs for the ATP derivatives are very
similar and do not show any significant variations.

Figure 1 shows that the distances between the Mg2+

cation and the four charged oxygen atoms vary between
2.0 Å and 4.5 Å. The restraints hold the magnesium cation
at the imposed distances. The Mg2+ cation is free to move
within the restraints, e.g., around 25 ps, Mg2+ moved from
oxygen O2B towards O1B and then went back to its
previous position.

Fig. 2 Time/temperature depen-
dence during single simulated
annealing molecular dynamics
(MD) run. The simulated
annealing (SA) protocol is
shown in the box
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To better understand what is happening in the same time
scale, Fig. 2 illustrates the time/temperature dependency
during the same, single SA run. Significant changes in the
four monitored distances were observed at the slow cooling
stage of the SA run, namely between 10 ps and 40 ps. This
is understandable, because the slow cooling stage allows
the system to obtain the most ordered or lowest energy
arrangement of molecules, and stay close to the equilibrium
state [23].

To verify if the magnesium cation is kept close to the
initial position during all 1,000 SA MD runs, we measured
the distances between Mg2+ and the charged oxygen atoms
from the beta and gamma phosphate groups (O1B, O2B,
O1G and O2G) for each snapshot taken at the end of every
SA MD run.

Figure 4 presents the frequencies of occurrence of the
distance values around 2.0 Å and 4.5 Å for ATP (ATP-
analogues showed similar results). The frequency of
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Fig. 3 Dihedral O4′–C1′–N9–
C4 angle dependence on inter-
proton distances H8–H1′
(crosses) and H8–H2′ (dots)
measured for ATP (a) and its
analogues (b). This plot can be
compared to the plot presented
by Jiang et al. [24], the results of
which were obtained from crys-
tallography and NMR system
(CNS) experiments

J Mol Model (2011) 17:1081–1090 1085



occurrence of values at 2.0 Å is higher than the frequency
of occurrence of values at 4.5 Å. We observed that when
the cation is bound within a close distance (2.0 Å) between
two oxygen atoms it does not change its position, which is
why we observe the Mg2+ cation at almost the same
distances. Close distance also represents stronger ion
interaction between the magnesium cation and the nega-
tively charged oxygen atoms. Occurrences of distance
values in the range between 2 Å and 3.5 Å are very rare
because this position is energetically unfavorable.

Analysis of the distribution of the values of torsion angle
O4′–C1′–N9–C4

ATP conformation can be partially defined by value of the
torsion angle between atoms O4′–C1′–N9–C4 (see Fig. S1).
If the value varies between 0±90 degrees, then the
conformation is denoted as “syn”, and if the value varies
between 180±90 degrees than the conformation is denoted
as “anti”. We checked the distribution of values in
conformations of our models, which were submitted to
SA MD. Values of the dihedral angle (O4′–C1′–N9–C4)
were measured for each of the snapshots taken after the
equilibration stage. Table 3 presents the measured values of
the torsion angle for each of the ATP-analogues. As an
example of the distribution of the analyzed dihedral angle,
Fig. 5 shows the distribution of values of the O4′–C1′–N9–
C4 angle in ATP.

Both Table 3 and Fig. 5 clearly show that there are two
maxima in the frequency of occurrence of the torsion angle
value. The first maximum is present around −120 degrees

(conformation anti) and the second maximum is around 60
degrees (conformation syn). The ATP molecule or its
analogue frequently adopts the anti conformation when it
binds inside the ATP-binding pocket. The results show that
the first maximum is broad and the other is rather sharp.
These two maxima represent two major sets of conforma-
tions of ATP and its analogues, and the transitions between
them may be essential for kinase activation.

Dependence between O4′–C1′–N9–C4 angle
and inter-proton distances H8–H1′/H8–H2′

The distribution of conformations of ATP can also be
partially described using analysis of the inter-proton
distances H8–H1′ and H8–H2′ versus the torsion angle ψ
(C4–N9–C1′–O4′). This analysis was previously applied by
Jiang and Mao [24] to the interpretation of combined NMR
and molecular modeling experiments on unmodified ATP
molecules. Comparison of our results and those obtained by
Jiang and Mao shows that we observe the same structural
behavior. From Fig. 3, we can clearly conclude that there
are two main conformations of ATP model, the first, which
is mostly in the anti conformation with ψ angle value of
−120±60 degrees ,and the second (syn) with ψ angle value
of 45±30 degrees. The two least frequent conformations are
characterized by ψ angle values of −30±30 and 120±30,
respectively.

Dihedral angle C4–N9–C1′–O4′ analysis shows that, in
ATP as well as in the 12 analogues, there are two gaps in
the distribution of angle values ranges, the first between
−30 and 30 degrees described by cis-conformation, and the

Fig. 4 Distances between the
magnesium cation (Mg2+) and
oxygen atoms from beta and
gamma phosphate groups (O1B,
O1G, O2B and O2G) in each of
the MD runs, calculated for ATP
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second between 90 and 175 degrees, which mostly covers
region of anti conformation, as presented on the right side
of Fig. 3a. The cis-conformation is forbidden only for some
of the ATP analogue models, namely 3, 7, 10 and 12 (see
Fig. 3b). This is a transitional conformation between the
“inactive conformation” (ψ angle values around 60) and the
“active conformation” (ψ angle values range around 160).
By the “active conformation” we mean a conformation of
ATP that is able to form a complex with protein. If the
molecular conformation falls into the inactive state and the
cis-conformation is forbidden, then there is no possibility to
change the conformation into the active state. This

conformational “gap” can possibly decrease the binding
affinity of such a ligand. This hypothesis explains the
results of biological experiments, namely the low values of
inhibition for ATP-analogues 3, 7 and 10 found by Shokat
and coworkers [3, 25].

The second region is forbidden for all the ligands, ATP
and its derivatives. To understand why the second region is
forbidden for all the ATP models, we calculated the energy
profile of the ATP model, changing the torsion angle by
rotating the adenine ring. We observed an increase in Van
der Waals (VDW) energy in the second forbidden-
conformational state (data not shown). Close distances
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Fig. 5 Distribution of values of
the dihedral angle O4′–C1′–N9–
C4, partially defining the con-
formation of ATP obtained in
1,000 MD runs. There are two
maxima, first present around
−120 degrees (conformation an-
ti) and the second around 60
degrees (conformation syn)

Table 3 Occurrences of dihedral O4′–C1′–N9–C4 angle values within small, 30° degree ranges

ATxP/ ATP AT1P AT2P AT3P AT4P AT5P AT6P AT7P AT8P AT9P AT10P AT11P AT12P
Angle

-180 0 0 0 0 0 0 0 0 0 0 0 0 0

-150 71 36 46 108 98 61 155 78 80 152 90 34 151

-120 246 72 66 223 149 136 134 212 178 186 222 115 216

-90 194 106 132 189 123 175 109 129 137 123 157 148 133

-60 96 143 199 100 114 106 96 34 72 47 69 190 57

-30 12 70 77 19 27 40 39 7 18 22 20 74 13

0 7 35 20 8 10 7 34 4 6 36 4 19 5

30 74 55 51 15 72 68 83 60 28 108 17 31 29

60 225 316 263 199 309 334 261 352 360 260 334 273 288

90 63 154 128 136 75 69 75 121 114 56 81 112 98

120 2 11 6 0 1 0 4 3 0 1 0 2 1

150 0 0 1 0 0 0 0 0 0 0 0 0 0

180 10 2 11 3 22 4 10 0 7 9 6 2 9
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between the adenine nitrogen atom N9 and hydrogen H2′
and H3′ atoms from ribose ring were revealed by visual
inspection of the conformation.

To summarize, the anti-conformation is disallowed due
to steric effects in all of the models, while in contrast the
presence of the cis-conformation is crucial for biological
activity.

How does ATP conformation depend on the conformation
of sugar?

The conformational change between the active and inactive
stage is possible only through the cis-conformation. The role
of ribose conformation might also be significant in obtaining
the active/inactive stage. To verify this hypothesis, we

calculated the relationship of ψ angle and torsion angle
between atoms C1′–C2′–C3′–C4′, which defines the sugar
conformation (see Fig. S1 and Fig. 6). The most commonly
populated sugar conformations [26] were the C3′-endo
region, corresponding to a torsion angle around 35°, and
the C2′-endo region with torsion angle values around −35°.

We observed that rotation of the adenine depends on the
conformation of the sugar. Figure 6 presents four main
conformations, two in the active state and two in the
inactive state. One of the conformations in the inactive state
is preferable and reflects the C2′-endo sugar conformation
and the torsion ψ angle around 45 degrees. For most of the
analogues it is not possible to change the adenine position
from the inactive to the active state having the C2′-endo
conformation. Furthermore, the switch between the active
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C4 angle dependence on sugar
conformation, described by di-
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matic conformational transition
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and inactive state is possible with the C3′-endo sugar
conformation present. The same conformational behavior
was observed in the case of the ATP molecule. Focusing on
the active conformation, we observed that it is also
favorable when the sugar is in the C2′-endo conformation.

We speculate that changes in sugar conformation are
involved in the transition from the inactive to the active
state of ATP analogues, and that the sequence of changes
includes the following stages (Fig. 6a):

(5) C2′-endo cis-conformation inactive
(1) C3′-endo cis-conformation
(2) C3′-endo anti-conformation
(3) C2′-endo anti-conformation active

Summary

In this work we present parameters introduced into the
AMBER force field and MD calculations for ATP and 12
ATP analogues proposed by Shah et al. [3] with one
magnesium cation, Mg2+. The ion was found close (2 Å)
to the charged oxygen atoms of the beta and gamma
phosphate groups of the ATP analogue molecule. Analyzing
the O4′–C1′–N9–C4 dihedral angle values, which partially
describe the conformation of ATP (and its N6-substituted
derivatives), we discovered the existence of two maxima.
One sharp maximum located near the +60° value of the
angle, which we call the “inactive-state”; and a second,
broad maximum located close to −120°, called the “active-
state”. The active-state conformation is frequently found
when ATP is bound in the ATP-binding pocket of kinases.
Change between the states is possible only through cis-
conformation (0±30°), which is not allowed for all ATP-
analogues, namely AT3P, AT7P, AT10P and AT12P. These
results correspond to the findings of Shah et al. [3], which
explained the low values of inhibition activity of those ATP-
derivatives with wild-type and mutant Rous sarcoma
tyrosine kinase. Additionally, we determined the character
of the contribution of the conformation of the ribose ring to
the transition between the inactive/active state. The path
from the inactive state to the active state leads through
changes between the C2′-endo and C3′-endo of the sugar.

Substitutions proposed by Shah et al. on the N6 adenine
atom of ATP do not influence the main conformational
properties of the nucleoside. Parameters introduced by us to
the AMBER force field tested by MD simulations gave
reasonable results regarding conformation, which are
comparable to experimental values [24].
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